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1The slides are mainly based on Chapter 6 of Probability and Computing.



Comments, questions, or suggestions?



Recap of Lecture S

* Derive a deterministic algorithm from

expectation argument

* Markov’s Ine.: graphs with arbitrarily big

girth and chro. number _
First

Moment
Nonzero method

{Probability | [sampling probability
Space \ /of success

modlﬁcatlon]




Recap of Lecture S

Var[X]
a2

* Chebyshev's Ine.: Pr(|X — E[X]| = a) <

Second
Var[X] < Var[X]

* Pr(X =0) < Pr(|X — E[X]| = E[X]) < E[x2] = (Ex]D2 | moment

2
+ When X = 0, Pr(X > 0) > {x]z)] method
(1-6)2(E[X])?

* PriX > OEX]D) 2 oo o

(E[X])?
> (1 _ 0)2 Ex?] 6 € (0,1)

* Application: Distinct Subset sum problem



Main Probabilistic Methods

* Counting argument
* First-moment method
e Second-moment method

e |l ovasz local lemma
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Application: threshold function

* Consider a property P of random graph G, ,,
* Threshold function t(n) for P is such that

tim Pr(G, has ) = {7 7~ 200

° Example (clique number ¢(G): max clique size)
e P:c(G) =4
2

* t(n) = n 3isits threshold function



2
Proof: whenp = o(n 3)

e §:a 4-subset of the n vertices
* Xs: indicator of whether S spans a clique
* X = )¢ Xs: the number of 4-cliques

4..6

B = () <

* By Markov’s inequality
Pr(c(G) = 4) = Pr(X > 0)

n4-p6

< E[X] < —

=o(1)



2
Proof: whenp = w(n 3)

* Toderive Pr(X >0) » 1
* By Chebychev’s Ineq.: Pr(X = 0) <
e Try to show Var[X] = o(E[X])*
* Recall Var|X] = Y Var[X¢] + X, =7 Cov(Xs, X7)
* X5 is an indicator = Var[Xs| < E[X(]
e Cov(Xg, X7) < E[X;X7] =Pr(Xs =1,X; =1)
= E[X;]Pr(X; = 1|X; = 1)
And Cov(Xg, X1)=0 if independent

Var[X]
(E[XD)?



Proof: estimating the variance

* Var[X]| < E[X] + YE[Xs| Xr-s Pr(X; = 1|Xs = 1)
= Y E[Xs]As
¢ As = 1+ Yjpasiez Pr(Xy = 1[Xs = 1)
+Z|TﬂS|=3 Pr(Xr = 1|Xs = 1)
=1+ (", )Gr® + ()G
= o(n*p°®) = o(E[X])
e Var[X] = o(E[X]?) = Pr(X = 0) <
= Pr(X >0) - 1

=0(1)



Main Probabilistic Methods

* Counting argument
* First-moment method
e Second-moment method

* Lovasz local lemma

2019/12/23
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Lovasz local lemma: motivation

e Can we avoid all bad events?

e Given bad events A, 4,, ... A,,, is Pr(n; 4;) > 0?
* Applicable to SAT, coloring, Ramsey theory...
* Two special cases
* XiPr(4) <1=Pr(n; 4;) =21 -3,;Pr(4) >0
* Independent = Pr(n; 4;) = [[(1 — Pr(4;)) >0
 What if almost independent?



Lovasz local lemma: symmetric version

* Dependency graph
* Undirected simple graphon S = {4, 4,,...4, }
« A; is independent of its non-neighborhood S\I'* (4;)
« T(4) £ T (AD\{4;}

* Theorem: Pr(nN; 4;) > 0 if
1.Vi,Pr(4;) <p,|IT'(4;)| <d and
2.4pd < 1
* By Erdos&Lovasz in 1973 to Erd6s 60t birthday






Lovasz local lemma: proof

* Standard trick
e Chain rule: Pr(n; 4;) = [T~ Pr(4;] ﬂ;l-;ll A7)
e Valid only if each n;;lle] has nonzero probability
* Hold if each term Pr(4;| N214;) > 0
* Claim: foranyt = 0and A4,B,,B,, ... B; € §,
1. Pr(ﬂ] 1 B;) >0

2. Pr(A| N} <—

11]



Inductive proof of the claim

e Basis: t = 0. Both 1 and 2 of the claim hold
* Hypothesis: the claim holds forall t' < t

* Induction
* For1l, Pr(ﬂf-:1 l?l)
— Pr(B,| N1 B) Pr(NiZL B) > 0
* For2,let{Cy,...C,,} = {B4,...B;} N T(4), and

{D1,...Dy} = {By, ... BL\I'(4)
e x<dx+y=t



Proof: induction for 2

If x =0, Aisindependent of {B,, ... B;} and
Pr(A| Nj=y B;) = Pr(4)< —~

* Assume x > 0. Theny < t.
Pr(An(N%-, B)))

* Pr(A| Nj=1 Bj) = Pr(N%_, B))
Pr(An(ND;)) _  Pr(A|NDj)
= Pr((NCHN(NDy)  Pr((NC)INDy)
Pr(4) 1

— P <
1-Pr((U €;)| N D;) 1_% = 2d



Application to (k,s)-SAT

e (k,5)-CNF
* Any clause has £ literals

* Any literal appears in at most s clauses
: . L . 2k
* Theorem: Any (k, s)-CNF is satisfiable if s <

* Randomly assign values to the Boolean variables

* A;: the event that the ith clause is not satisfied
* Pr(NA4;)>0 & satisfiable
p=Pr(4;) =27%, d<ks

k

e s < %27 = 4pd < 1 = Pr(NA4;)>0 = satisfiable

NI

k



Application to Ramsey Number R(k)

e Counting argument: R(k) > kZz _e\/_ + 0(1)] [1947]
[f

* Best result: R(k) = k22 )] [1975, Spencer]

* Randomly color edges of K, in red/blue
e §:a k-subset of the vertices
* Ag: S is monochromatic

k
cp=pitap) =270, a < (9)(,2)
e . k2
* By Stirling’s formula, 4pd < 1ifn < k22 [? + 0(1)]
e Can we say something about R(k, t)?



Non-symmetric LLL

* Theorem: Pr(n; 4;) > 0 if Vi, 2. jer(ay) Pr(Aj) < %
* [Spencer, 1975]
* The sense of “local”

* Follow the proof of symmetric LLL, with induction
on m to show that Pr(A| N7%; B;) < 2Pr(A)

* Application to R(k, t):
Kk

(3)-2
R(k,t) >t k-2 to() \ith k fixed and t - o




(3)-2
Proof: R(k,t) > t k-2

* Randomly color edges of K, p in red, (1 — p) in blue

+0(1)

* §:a k-set of the vertices; T: a t-set of the vertices

* As: Sisaredclique; By: T is a blue clique

+ Pr(4g) = pla)pr(8y) = (1 - p)®

* Any event has at most (;)(k’jz) neighbors being Ag,
at most (/) neighbors being By

e letp =n"¢BYO t =nbte g = k20<8<e

(z)-2
we have (;)(," z)p( ) + (7)1 - p)(2)< =




A stronger non-symmetric LLL

e Pr(n 4;) > 0 if there are x4, x5, ..., x,, € (0,1) s.t.

Vi,Pr(4;) < x; HjeF(Ai)(l — Xj)

e Similar proof, but

» Prove Pr(4;| N5-1 Bj) < x;
e Use chain rule to lower-bound the numerator Pr(ﬂ C_'] | N ﬁ])
by [1eran(1 — ;)

* Spencer, 1977




k+1
t

RGO Zc(=) © (1-0(D)

k—2

* Follow the proof of R(k,t) > t k-2
* Define events A and By for any k-set S and t-set T

e Letp = cyn P, t = c,nPlnn, xg = (1 + €)Pr(4y)
Xp = gcsnIn’ "Pr(Ay), with g = ﬁ, e>0
* Apply LLL
* Best until 2010

~——40(1)

k+1

1
* Bohman&Keevash: R(k,t) = ¢ (ﬁ) * (In t)k—2



Major open problem

» Determine a(k) s.t. R(k,t) = t¥)+o(1)
(2)-2
k-2

—1
* Spencer 1977: a(k) = kzi — )

e Best for 40+ years
* How tight is it?
e a(k) <k —1since R(k,t) < (k”_z

k-1
e Conjecture: a(k) =k —1
* Yesfork =3
 Unknown for larger k

 Spencer 1975: a(k) >




* This local lemma is so strong. Is it ultimate?



Pr(A;)
1

Trivial upper bound

Pr(4;) < x; 1_[ (1—x;)

JET(A()

Z Pr(4;) < %

JET(A})

4pd < 1

0 ) > Pr(4,)

Local lemma is to determine a curve surrounding a safe zone.
Safe: Pr(n; A;) > 0 any set of events with the probabilities



Tight Bound of Lovasz local lemma

* General (Non-symmetrical) case
* Pr(n4;) > 0 if

VS €ind(G), Y 7125 (DTS T.crp; >0
T€ind(G)

* By James B. Shearer @IBM in 1985
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Tight Bound of Lovasz local lemma

* Symmetrical case

* Pr(NA4;) > 0 if

f(d_l)d—l
y whend > 1
p <X 1 d
— whend =1
L 2

e Corollary: Pr(N4;) > 0ifedp <1



Application

: . : 1 2k
* Any (k,5)-CNF is satisfiable if s < ——
k
* Known: satisfiable if s < %27
1)) 2

* Tight bound of s: (E + o0 (—))

vk
[Gebauer et al. 2011]
* Can we efficiently find a satisfying assignment?

k



Algorithmic aspects

* Like other probabilistic methods, LLL proves
existence non-constructively

* Unlike other probabilistic methods, LLL doesn’t
lead to efficient algorithms

* Directly sampling has an exponentially small lower
bound of success probability

e Say, Pr(n 4;) = [1(1 — x;) for general version
* Is there an efficient, constructive proof?



Constructive Lovasz Local Lemma

* Initiated by Joszef Beck in 1991

* Under strong conditions on neighborhood size
* In terms of coloring, SAT ...

* Breakthrough by Robin Moser&Gabor Tardos in
2009, Kashyap Kolipaka and Mario Szegedy in 2011
* Events are generated by independent random variables

* If Shearer’s condition is met, an assignment s.t. none
events occurs can be found in linear time




Joszef Beck £

NS

LIV

x&

Gabor Tardos Mario Szegedy




The assignment algorithm

For X € X do
Vy < arandom evaluation of X
EndFor
While (some A occurs) do
Arbitrarily pick an event A that occurs
For X € vbl(4) do
Vy < a random evaluation of X
EndFor
EndWhile

Return (vx) xex
* vbl (A) c Y: the set of variables determining A



Directions of LLL research

e Local conditions
e Cluster LLL
e Random walk

* Algorithms (Inspired by Moser&Tardos)
* Efficient beyond Shearer’s bound?
* Efficient for abstract events?




Comparing probabilistic methods

* All dependent vs almost independent
e Counting (union bound): mutually exclusive
* First moment: linearity doesn’t care dependence
* Second moment: pairwise dependence
e LLL: global dependence
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